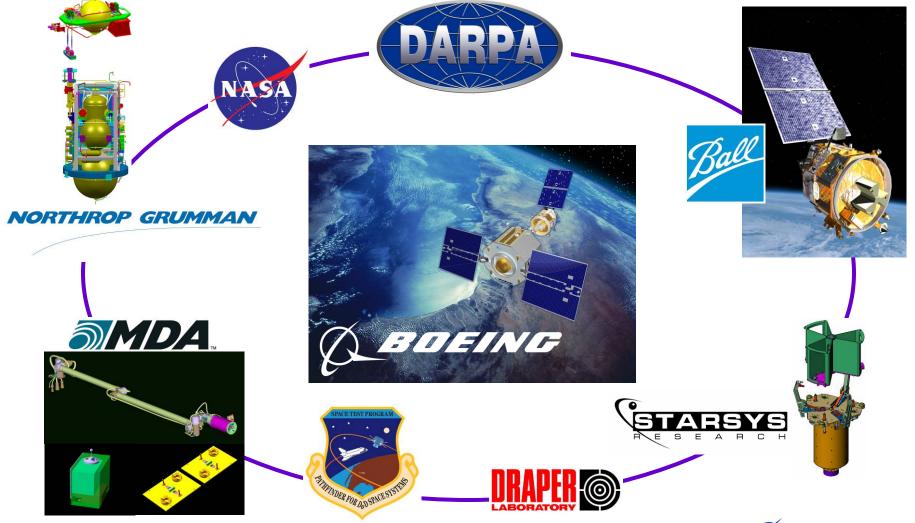
NEXTSat Over Crete


- Orbital Express (OE) was a DARPA program demonstrated the technical feasibility, operational utility, and cost effectiveness of autonomous techniques for on-orbit satellite servicing
 - Phase 1 Concept study (2000-2001)
 - Phase 2 Advanced Technology Flight Demonstration (1/2002 7/2007)
- > Specific objectives were to develop and demonstrate on orbit:
 - A nonproprietary satellite servicing interface specification
 - Orbit propellant transfer between a depot/serviceable satellite and a servicing satellite
 - Component transfer and verified operation of the component
 - Autonomous rendezvous, proximity operations, and capture
- On-Orbit demonstration of technologies was required to reduce risk of autonomous on-orbit satellite servicing
 - Perform autonomous fuel transfer in a zero-g environment
 - Perform autonomous Orbital Replacement Unit (ORU) transfer
 - Component replacement (Battery and Computer)
 - Perform autonomous rendezvous and capture of a client satellite
 - Direct Capture, Free-Flyer Capture / Berth

The Orbital Express Team

ASTRO (Autonomous Space Transfer and Robotic Orbiter)

Dimensions:

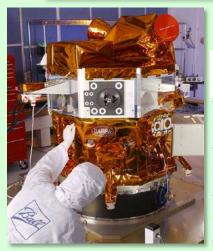
1.75 x1.77 m

Span:

5.59 m

Power:

1.560 Watts


Fueled Mass:

~1,100 kg

- Hydrazine monopropellant reaction control system for 6 DoF Control
- Integrated GPS and INS
- * Active servicing functions:
 - Rendezvous and Proximity Operations Sensors
 - Relative Navigation Software

- Robotic Arm
- Active Capture Mechanism
- Active Fluid Coupler and Fluid Transfer Components
- Battery and Computer ORU bays (MDA)
- 1553 Data Interface
- Crosslink

NEXTSat/CSC (Next Generation Satellite/Commodity Spacecraft

Ball Aerospace & Technologies Corp.

Dimensions:

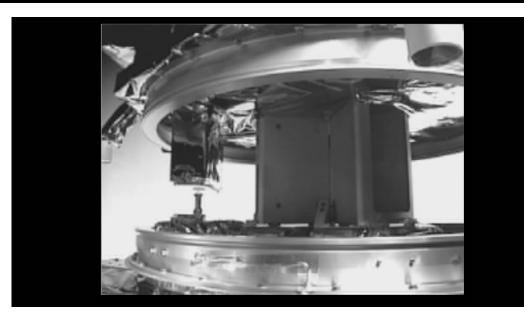
~ I m x 2 m

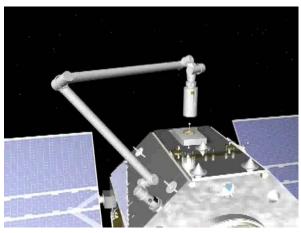
Power:

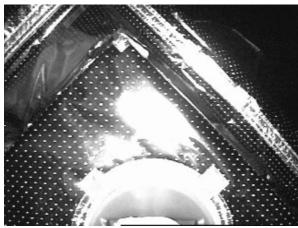
500 Watts

Mass:

224 kg

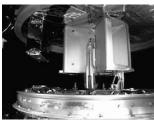

- Attitude Determination and Control, no maneuver capability
- Fixed Solar Array
- Standard servicing interfaces
 - Passive capture mechanism
 - Passive Fluid Coupler and Transfer Tank
 - Battery ORU bay
 - 1553 Data Interface
 - Crosslink

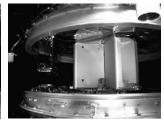

Orbital Express On-Orbit Demonstration Summary


- > Launched March 8, 2007
- Fifteen propellant transfers performed
 - Varying levels of autonomy
 - Pressure-fed and pump-fed
 - Multiple means of mass transfer control

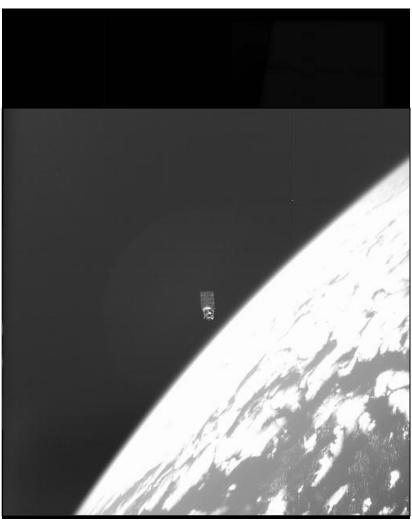
> Eight ORU Transfers performed

- Battery and Computer
- Varying levels of autonomy
- Transfers to and from client/commodity depot
- Functionality of both components proven after transfer

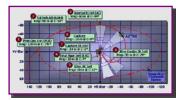

Orbital Express On-Orbit Demonstration Summary

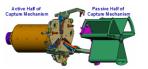

Six rendezvous exercises performed

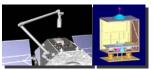
- Relative ranges of 12m to 400+ km
- Rendezvous from in front of, and behind target
- Stand-off at 4 km, 1 km, 500 m
- Station-keeping at 120 m, & 10 m
- Elliptical and circular fly-around inspections at 1x and 3x orbit rates
- Corridor approaches to fixed and rotating client spacecraft/depot
- Day and night, direct and robotic-arm captures
- Autonomous and ground-commanded aborts

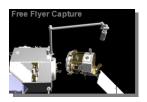

Mission Completed July 22, 2007

On-Orbit Capture Sequence




Scenario 7-1: Rendezvous to 4 km, Free-flyer Capture




Orbital Express Program Accomplishments

Six Major World and US Firsts:

- ✓ First U.S. fully autonomous on-orbit transfer of propellant (Hydrazine) from one spacecraft to another
- ✓ First fully autonomous battery transfers
- ✓ First fully autonomous computer transfer
- ✓ First fully autonomous rendezvous and direct capture without client spacecraft navigation assistance
- ✓ First fully autonomous capture and berthing of a free-flying satellite with a robotic arm
- √ First fully autonomous Long Range (> 400 km) rendezvous

100% Mission Success

- √ 100% of Mission Requirements Met (23/23)
- √ 96% of Mission Goals Met (25/26)

"The folks who did this clearly have more experience in how to bring two spacecraft together than probably anyone in the world--past and present. Thanks again to everyone."

- Dr. Tony Tether, DARPA Director

Low Risk Servicing Capability Demonstrations Improves Customer Confidence and Encourages A New Paradigm

Orbital Express

Demonstrate

Technical Feasibility

Demonstrate

- Rendezvous, proximity operations & capture
- **■** Propellant and hardware transfer

Satellite Servicing of Existing Assets

Demonstrate "real-world" life, reliability & cost benefits for operational satellites

Provide

- Customer value at less cost than replacement satellite
- Service at virtually no risk to customer by use of insurance and by initially focusing on satellites at near-end-of-life

Next Generation

Operators demand minimum impact

OE-enabled features in next gen satellites

Encourage

- Standardized servicing interfaces
- Scheduled maintenance and servicing op's
- **■** Greater flexibility and performance

Cooperative Servicing Infra-structure

Enable

■ Revolutionary new space missions and capabilities

